• Home
  • Practice Focus
    • Facial Plastic/Reconstructive
    • Head and Neck
    • Laryngology
    • Otology/Neurotology
    • Pediatric
    • Rhinology
    • Sleep Medicine
    • How I Do It
    • TRIO Best Practices
  • Business of Medicine
    • Health Policy
    • Legal Matters
    • Practice Management
    • Tech Talk
    • AI
  • Literature Reviews
    • Facial Plastic/Reconstructive
    • Head and Neck
    • Laryngology
    • Otology/Neurotology
    • Pediatric
    • Rhinology
    • Sleep Medicine
  • Career
    • Medical Education
    • Professional Development
    • Resident Focus
  • ENT Perspectives
    • ENT Expressions
    • Everyday Ethics
    • From TRIO
    • The Great Debate
    • Letter From the Editor
    • Rx: Wellness
    • The Voice
    • Viewpoint
  • TRIO Resources
    • Triological Society
    • The Laryngoscope
    • Laryngoscope Investigative Otolaryngology
    • TRIO Combined Sections Meetings
    • COSM
    • Related Otolaryngology Events
  • Search

History of the Cochlear Implant

by Gretchen Henkel • April 1, 2013

  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
Print-Friendly Version

In Rapid Succession

After the FDA’s first approval of the single-channel implant for adults, others quickly followed: The multiple-channel implant was approved for adults in 1987, and a multiple-channel implant was approved for children in 1990. The initial age for children was 2 years, then 18 months in 1998 and 12 months in 2000.

You Might Also Like

  • Milestones in Development of Cochlear Implant Technology
  • New Cochlear Implant Improves Hearing in Subset of Patients
  • Best Timing for Second Implant in Pediatric Bilateral Cochlear Implantation
  • Hybrid Cochlear Implant Helps Preserve Residual Low-Frequency Hearing
Explore This Issue
April 2013

Dr. Shannon noted that the improvements in CI performance in the 1990s were due to advances in understanding brain processing. “Although implants worked well in the 1980s, improvements came when we ‘got out of the way’ and stopped ‘pre-processing’ the signal to pull out the important parts and presented the raw speech signals to the multiple electrodes. The brain, trained over millions of words over a lifetime, is far better at picking out the most important parts of the signal.”

By 2010, more than 219,000 patients worldwide had received cochlear implants.

By 2010, more than 219,000 patients worldwide had received cochlear implants.

The Future Looks Bright

As manufacturers’ devices become more and more sophisticated (for example, the waterproof Neptune processor manufactured by Advanced Bionics allows users to go swimming), investigators continue to push the boundaries. Current thrusts of research include implantation in very young infants, timing of bilateral implantation, preservation of residual hearing structures and stem cell research. Dr. Miyamoto’s laboratory has just received approval from the FDA to study CIs in infants aged six months to 1 year. In many European countries, especially in Italy, investigators are placing implants in infants as young as three months (See “Cochlear Implants: How Young is Too Young?”).

Currently, the FDA allows implantation in infants at 1 year, but what we now know about brain plasticity in developing infants has led some researchers to conclude that earlier implantation results in better outcomes for children. The six-center

Childhood Development after Cochlear Implantation (CDaCI) Study, led by John Niparko, MD, at Johns Hopkins School of Medicine in Baltimore, was initiated in 2002 to systematically evaluate early cochlear implant outcomes in children. “We were trying to empower families with the strength of prediction and wanted them to know the realistic expectations of withholding cochlear implants until age 3,” said Dr. Niparko. Between 2002 and 2004, investigators enrolled 188 children with profound sensorineural hearing loss who underwent CI implantation, and 97 children with normal hearing.

Extensive baseline assessments and thorough follow-up as the children age are yielding not only observations about language acquisition but also valuable insight into the effects of environmental factors on CI outcomes (JAMA. 2010;303:1498-1506). This is especially important, said Drew Horlbeck, MD, of the division of otolaryngology at Nemours Children’s Clinic in Jacksonville, Fla., because the “real work” starts after placement and programming of the implant. “The important thing with an implant isn’t so much the surgery,” he said, “but the rehab afterwards.” The CDaCI investigators are finding, for instance, that higher socioeconomic status and higher parent-child interactions are associated with greater rates of improvement in comprehension and expression, said Dr. Niparko. Dr. Horlbeck, who trained with Dr. Niparko and has been doing implants since 1999, noted that the comprehensive rehabilitation team at Nemours contributes to the overall success of the program.

Pages: 1 2 3 4 5 6 7 8 | Single Page

Filed Under: Features, Otology/Neurotology, Pediatric Tagged With: cochlear implant, hearing loss, pediatricsIssue: April 2013

You Might Also Like:

  • Milestones in Development of Cochlear Implant Technology
  • New Cochlear Implant Improves Hearing in Subset of Patients
  • Best Timing for Second Implant in Pediatric Bilateral Cochlear Implantation
  • Hybrid Cochlear Implant Helps Preserve Residual Low-Frequency Hearing

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

The Triological SocietyENTtoday is a publication of The Triological Society.

Polls

Would you choose a concierge physician as your PCP?

View Results

Loading ... Loading ...
  • Polls Archive

Top Articles for Residents

  • Applications Open for Resident Members of ENTtoday Edit Board
  • How To Provide Helpful Feedback To Residents
  • Call for Resident Bowl Questions
  • New Standardized Otolaryngology Curriculum Launching July 1 Should Be Valuable Resource For Physicians Around The World
  • Do Training Programs Give Otolaryngology Residents the Necessary Tools to Do Productive Research?
  • Popular this Week
  • Most Popular
  • Most Recent
    • A Journey Through Pay Inequity: A Physician’s Firsthand Account

    • The Dramatic Rise in Tongue Tie and Lip Tie Treatment

    • Otolaryngologists Are Still Debating the Effectiveness of Tongue Tie Treatment

    • Is Middle Ear Pressure Affected by Continuous Positive Airway Pressure Use?

    • Rating Laryngopharyngeal Reflux Severity: How Do Two Common Instruments Compare?

    • The Dramatic Rise in Tongue Tie and Lip Tie Treatment

    • Rating Laryngopharyngeal Reflux Severity: How Do Two Common Instruments Compare?

    • Is Middle Ear Pressure Affected by Continuous Positive Airway Pressure Use?

    • Otolaryngologists Are Still Debating the Effectiveness of Tongue Tie Treatment

    • Complications for When Physicians Change a Maiden Name

    • Excitement Around Gene Therapy for Hearing Restoration
    • “Small” Acts of Kindness
    • How To: Endoscopic Total Maxillectomy Without Facial Skin Incision
    • Science Communities Must Speak Out When Policies Threaten Health and Safety
    • Observation Most Cost-Effective in Addressing AECRS in Absence of Bacterial Infection

Follow Us

  • Contact Us
  • About Us
  • Advertise
  • The Triological Society
  • The Laryngoscope
  • Laryngoscope Investigative Otolaryngology
  • Privacy Policy
  • Terms of Use
  • Cookies

Wiley

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies. ISSN 1559-4939